Chapter 1
 Section 1.6

Equations Involving Square Roots

In general, it is easier to work with an equation not containing square roots. This is why we use the formula $a^{2}+b^{2}=c^{2}$ instead of $\sqrt{a^{2}+b^{2}}=c$. Therefore, in most instances, we will try squaring both sides of an equation involving square roots. Hint: It is usually easier to isolate the square root first.
(1) By isolating the square root and squaring both sides, solve $\sqrt{x}+12=x$.
(2) Solve $w=\frac{\sqrt{1-3 w}}{2}$.
(3) By squaring each side twice, solve $\sqrt{n+4}+\sqrt{n-1}=5$.

Equations of Quadratic Type

Def: An equation of quadratic type is an equation of the form $a u^{2}+b u+c=0$ where u is an algebraic expression.
Q: Is a quadratic equation an example of an equation of quadratic type?

Exercises

(1) Solve the following equation of quadratic type $x^{4}-14 x^{2}+45=0$.
(2) Solve the equation $\left(x^{2}+x\right)^{2}-8\left(x^{2}+x\right)+12=0$.
(3) Solve this equation of quadratic type $x^{2 / 3}-9 x^{1 / 3}+8=0$.

Equations with Rational Exponents

Solving an equation with rational exponents involves a similar method to solving an equation with square roots (since a square root is an exponent of $1 / 2$ which is definitely rational). You first want to isolate your term with rational exponent and then raise both sides to the reciprocal of the rational exponent. Hint: Remember our exponent rules, $x^{a / b}=\left(x^{1 / b}\right)^{a}=\left(x^{a}\right)^{1 / b}$.
(1) Solve the equation $x^{4 / 3}=625$.
(2) Solve the equation $(y-2)^{-5 / 2}=32$.
(3) If you had troubles with (3) of the previous section, now is the time to go back and finish it.

Q: When dealing with rational equations $x^{a / b}=c$ with $a, b, c \in \mathbf{R}$ and $b \neq 0$ when will your answer require a \pm symbol?

Equations Involving Absolute Value

We have already discussed methods for solving simple absolute value equations. When you have an equation of the form $|u|=|v|$ where u and v are algebraic expressions you just need to remember that this is equivalent to saying u and v are either equal or opposite.
(1) Solve the equation $\left|x^{2}-6\right|=5 x$.
(2) Solve the equation $\left|x^{2}-2 x\right|=|3 x-6|$.

